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Abstract — We report on the mm-wave performance of a
multi-layer thin-film MCM-D technology with integrated
passive components. The standard 50 ) CPW line exhibits a
loss of -0.2 dB/mm at 60 GHz. A single CPW bridge (bend)
has a return loss superior t¢ -32 dB (-27 dB) up to 50 GHz
with an insertion loss of -0.04 dB (-0.06 dB) at 50 GHz. A
30 GHz bandpass filter has achieved an insertion loss of -
2.5dB over a 8% bandwidth with a return loss of -20 dB. A
Q-band Wilkinson power divider has a return loss better
than -15 dB from 31-48 GHz, isolation below -20 dB with an
insertion loss of -3.5 dB. A quadrature coupler has a return
loss better than -15 dB up to 60 GHz with an amplitude ba-
lance of 0.5 dB over the 38-60 GHz band, isolation of 20 dB,
phase balance of (90+/-2)° and insertion loss of -4 dB.

L. INTRODUCTION

The trend towards high-volume, low cost RF and micro-
wave applications requires that suitable packaging techni-
ques need to be developed. They should offer a high de-
gree of integration to reduce size, weight, but also cost
and power consumption. Multilayer thin-film multi-chip
module technology (MCM-D) offers a very high re-
producibility of small line dimensions (minimum feature
sizes as small as 5 pm have been demonstrated [1]) and is
therefore a promising technology for the low-cost integra-
tion of RF and microwave circuits.

Previously, a number of passive functions from RF to
Ku band have been demonstrated [2-4]. Several circuits
where the active components (¢.g., a flip chipped bare-die
component) and passive functions (using the MCM-D
embedded passive components) are integrated on the same
interconnect substrate, have been demonstrated in [5-7].
Here, we focus specifically on the mm-wave performance.

[I. MCM-D TECHNOLOGY DESCRIPTION

IMEC's MCM-D layer built-up (Fig. 1) consists of alter-
nating thin layers of BCB (benzo-cyclobutene, g = 2.65)
and Cu metallizations, deposited on a AF45 glass carrier
substraie (g,= 6.2}, The Cu layer {metal-2) is preferred for
the realization of low loss CPW lines, however, the
bottom (metal-1) and top (metal-3) layers can also be
used. TaN-resistors with a typical value of 25 (/0 are
integrated, For large capacitance values, anodized tanta-
lum is used (720pF/mm®), smaller capacitors (4.7 pF or
9.4pF/mm’, depending on the type} are realized wusing

. 1umbottom Af contact metal

BCB as insulating dielectric, or, below 100 {F, interdigital
capacitors are used.

The quality factors of the inductors may go above 100
at 10 GHz (inductance < 1.7 nH). Naturally, for larger in-
ductances a lower quality factor is obtained due to the in-
creased losses and capacitive coupling between the turns,
however, an 18 nH inductor still has a Q. of 38 at
2 GHz while a 40 nH inductor Qp, 0f 29 at 1 GHz.
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Fig. 1: Layer built-up of IMEC’s MCM-D technology

As a planar technology is used, an MMIC type design
methodology is used: all passive components and discon-
tinuities have been modeled and integrated in a design
library, hereby allowing to easily co-design several active
and passive functions [8, 9].

III. TRANSMISSION LINE PERFORMANCE

As thin BCB layers are used, CPW transmission lines
are preferred (as compared to thin-film microstrip lines)
for the realization of low loss interconnects. The standard
50 Q line is realized using a strip/slot of 77/20 pm and has
a typical loss (Fig. 2) of -0.2 dB/mm @ 60 GHz. With
117um as nominal ground-to-ground distance, CPW lines
with characteristic impedances of 50-116€2 are feasible.

I'V. DISCONTINUITIES

The optimization of discontinuities is especially impor-
tant at mm-wave frequencies as the parasitic capacitances
limit the high frequency performance of the technology.

A. Bridges

Grounding straps are required to suppress the excitation
of the parasitic coupled slotline mode. Where airbridges
are commonly used in CPW-based MMICs, bridges (on
metal-3) or underpasses (on metal-1) can be used here.

The bridges used at RF-frequencies (Fig. 3 (a) and (b)),
have a width of <10 pum, though, the associated parasitic
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capacitance to ground (Cgp.) is too high for mm-wave
operation. Cyp,e may be reduced by reducing the width of
the line, keeping the ground-to-ground spacing of the
CPW line constant, however, the obtained capacitance
reduction is limited due to BCB-planarization effects as
shown in Fig. 4: as the strip width is reduced, the bridge
comes closer to the signal, hereby increasing C
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Fig. 2: Measured insertion loss and return loss for a 14 mm long
50 Q) line (width=77 pum, slot=20 um).
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Fig. 3: Schematic_layout of (a) the conventional bridge, (b) con-
ventional tunnel and (¢} optimized bridge structure.
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~ Fig. 4: Surface profile of a metal-2 CPW line with dimensions
(a) slovwidth=50.5/16 pm and (b) slot/width=77/20 um.

The optimized bridge locally reduces the width, slot and
bridge to 20 um. The simulated performance (excluding
planarization) of the different bridges is shown in Fig, 5:
good performance of the optimized bridge may be ob-

served.
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Fig. 5: Simulated performance (HFSS) of different bridge-types
for a 50 Q) feeding line: (left) parasitic slotline mode suppres-
sion, (right) CPW mode return loss: (-A-) conventional tunnel,
(-V-) conventional bridge, (-e-) optimized bridge.

A transmission line is used to model the bridges. The
parameters are determined by fitting the model to the mea-
surements of a cascade of bridge-CPW sections (Fig. 6).

The obtained result is shown in Fig. 7: the measured
return loss of the cascaded structure is superior to -24 dB
up to 50 GHz (return loss of a single bridge is superior to
-32 dB up to 50 GHz). By comparing the measured loss of
the cascaded structure with a CPW line, the insertion loss
per bridge is in the order of -0.04 dB @ 50 GHz.

Fig. 6: Bridge and bend characterization test structures.
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Fig. 7: Measured (black) versus modeled (giev) Sy (left) and S,
(right) of a cascade of seven optimized bridges and six 50 2
CPW line sections (45 MHz - 50 GHz).

B. Bends

The layout is based on the above bridge layout and
modeled as a short transmission line. The mode! parame-
ters are determined by fitting the model to a cascade of
bend-CPW sections as shown in Fig. 6, the obtained result
is shown in Fig, 8; the retumn loss of the cascaded struc-
ture is superior to -22 dB up to 50 GHz. The insertion loss
is in the order of -0.06dB/bend @ 50 GHz, whereas the
return loss for a single bend is below -27dB up to
50 GHz,

Fig. 8: Measured (black) versus modeled (grey) Sy (left) and Sy
(right) of a cascade of 12 bends and 13 50 ) CPW line sections.

C. T-junction

The layout of the T-junction is shown in Fig. 9. The
characterization is based on [10]; the orthogonal port is
terminated by 3 different "known" reflects: an open, a
short and a 50 £ load.
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Fig. 9: Optimized T-junctions with 3rd port terminated in 3
different reflects: a short, an open and a 50 £2 load.

V. Q-BAND WILKINSON POWER DIVIDER

A Wilkinson power divider (Fig. 10) has been designed
at 40 GHz: the measured return loss (Fig. 11) is better
than -15dB from 3{-48 GHeg, isolation (Fig. 12) better
than -20 dB with an insertion loss of -3.5 dB.

Fig. 10: 40 GHz Wilkinson power divider (0.6 x 1.2 mm?).
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Fig. 11: Return loss of the 40 GHz Wilkinson power divider.
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Fig. 12: Isolation and insertion loss of the 40 GHz Wilkinson
power divider.

The measurements were obtained by repeating the
structure 2 times on the wafer, terminating the orthogonal
port in an en-wafer 50 Q load. The effect of the non-ideal
termination has been removed from the measurements
using [11].
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VI. Q-BAND QUADRATURE COUPLERS

As a 2-fingered 3-dB edge-coupled coupler matched to
50 €2 resulted in unfeasible dimensions, 70 2 has been
used as reference impedance in the following designs (the
measurements have been renormalized accordingly).
Version (a) in Fig. 13 uses two coupled lines {W=40um,
S=5 um, Sgouwe=100 um, coupling length lmm), version
(b) uses the same lateral dimensions, though the coupling
is increased by two 75pm long floating patches on metal-3
at the edges of the coupler (overall coupling length of
875 pm). This method may further be used to increase the
isolation at a specific frequency [4, 12].

(b)
Fig. 13: Picture of (a) 2 finger quadrature coupler, (b) 2 finger
quadrature coupler using additional capacitive coupling.

Version (a) achieves a return loss (Fig. 14) better than
-15 dB up to 60 GHz with an amplitude balance of 0.5 dB
over the 38-60 GHz band, isolation {Fig. 15) of 20 dB,
phase balance of (90+/-2)° and insertion loss of -4 dB.
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Fig. 14: Return loss of the 2-finger quadrature coupler.
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Fig. 15: Isolation and insertion loss of the 2-finger coupler.

Version (b) (Fig. 16, Fig. 17) has a return loss better
than -15 dB up to 58 GHz, with an amplitude balance of
1dB over the 31 to +60 GHz band, phase balance of
(90+/-2)°, worst case isolation and insertion loss of 17 dB
and -4.4 dB, respectively.
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-20dB with an insertion loss of -3.5dB. A quadrature
coupler has a return loss better than -15 dB up to 60 GHz
with an amplitude balance of 0.5 dB over the 38-60 GHz
band, isolation of 20 dB, phase balance of (90+/-2)° and
insertion loss of -4 dB.
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Fig. 17: [solation and insertion loss of the 2-finger quadrature
coupler using additional broadside coupling.

VII. INTEGRATED ATTENUATORS

Attenuators can be imtegrated in the MCM-D
technology. The measured performance of a 3dB, 6dB and
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team for the realization of the thin-film technology.
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